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Pöschl–Teller dynamics*

V Aldaya1,2 and J Guerrero1,2,3

1 Instituto de Astrofı́sica de Andalucı́a (CSIC), Apartado Postal 3004, 18080 Granada, Spain
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30100 Murcia, Spain

Received 5 April 2005, in final form 15 June 2005
Published 20 July 2005
Online at stacks.iop.org/JPhysA/38/6939

Abstract
The quantum dynamics of a particle in the modified Pöschl–Teller potential is
derived from the group SL(2, R) by applying a group approach to quantization
(GAQ). The explicit form of the Hamiltonian as well as the ladder operators
is found in the enveloping algebra of this basic symmetry group. The present
algorithm provides a physical realization of the non-unitary, finite-dimensional,
irreducible representations of the SL(2, R) group. The non-unitarity manifests
itself in that only half of the states are normalizable, in contrast with the
representations of SU(2) where all the states are physical.

PACS number: 03.65.Fd

1. Introduction

Symmetry has proven very useful in quantum mechanics as a powerful tool to construct
explicitly the eigenstates and eigenvalues of a given symmetrical Hamiltonian. Since the
pioneering work of Wigner [1] many papers have been devoted to the analysis of solvable
quantum systems through their ‘dynamical symmetries’ or ‘spectrum-generating algebras’
[2]. In particular, the Pöschl–Teller and Morse potentials, binding molecular systems, have
been soundly studied along these lines [3–6] (see also [7] for a recent and more detailed
bibliography). But symmetry can be taken beyond this ability and constitutes the fundamentals
for physical systems in such a way that any referent to them, that is, spacetime, classical solution
manifold, wavefunctions, operators, scalar product, etc, can be explicitly derived in a natural
manner from a particular Lie group. This viewpoint has been demonstrated in many finite- and
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infinite-dimensional cases by applying a group approach to quantization (GAQ) developed
since the original paper [8], where the quantum free Galilean particle and the harmonic
oscillator were derived. Then, this algorithm has been applied to less elementary groups such
as those associated with relativistic particles, in particular the relativistic harmonic oscillator
[9–11], field theories in curved spacetimes, nonlinear σ -models, the Virasoro group and
others concerning conformal symmetry and quantum gravity (see, for instance, [12–14]).

The modified Pöschl–Teller potential (MPT), however, has a special attraction in spite
of its simplicity, because it seems not to be primarily associated with a particular symmetry,
but rather with a phenomenological force, and it is less integrable than other more involved
physical problems. In specific terms, the classical Hamiltonian does not close a Poisson
subalgebra with the coordinate and the momentum. This system prompts us to search for an
alternative finite-dimensional Poisson subalgebra in the free algebra generated by 〈H, x, p〉,
a procedure which would be of a wide usage since these generators generally fail in closing
a subalgebra in many physical systems. In fact, it is possible to find two classical functions,
X and P , that close with the classical Hamiltonian H a ‘Lie algebra’ having the structure
constants replaced with functions of the energy, a breakdown of the Lie structure similar to
that found in the hydrogen atom when trying to close the dynamical symmetry generated by the
angular momentum and the Runge–Lenz vector [15, 16], which turns out to be SO(4), E(3)

or SO(3, 1) depending on whether the fixed energy is negative, null or positive. Unlike the
hydrogen atom, here the energy is not central in these Lie algebras, and the symmetry proves to
be SO(2, 1) (or SU(1, 1) ≈ SL(2, R)) although for bound states (negative energy) a complex
prolongation of this algebra can be confused with SU(2) at the classical level. In fact, since
the Lie algebras of these groups have the same complex form, a complex prolongation from
one part of the spectrum to the other can be easily performed.

We shall proceed by taking the square root of H and considering the set 〈E ≈ √
H,X ,P〉,

which closes a true Lie algebra, SO(2, 1), as the starting point for the GAQ. From an algebraic
group law for SO(2, 1) we derive the irreducible representations of the group as well as the
explicit expression of all operators in the (enveloping) algebra and, in particular, the operator
E2 ≈ H . This operator will result in p̂2−D/cosh2(αx), i.e. the quantum operator representing
the original Hamiltonian associated with the potential V (x) = −D/cosh2(αx),D being the
absolute value of the potential depth and α an indicative of its width.

A remarkable feature appearing in the present process is that the eigenstates of the
MPT Hamiltonian with negative energy, i.e. the bound states, are formally obtained from
the wavefunctions in the discrete series of the SL(2, R) unitary irreducible representations
(the wavefunctions for a model of a relativistic harmonic oscillator) with negative Bargmann
index k = −q < 0. This can be seen to correspond to a non-unitary, finite-dimensional,
representation of SL(2, R) [17] (see [18] for a different discussion, and [19] for an explicit
realization of matrix elements in terms of hypergeometric functions). The non-unitarity of
the representation reveals itself in the fact that not all the wavefunctions are normalizable,
and therefore the physical Hilbert space is smaller. In fact, from the 2q + 1 states of the
representation, �

q
n , , n = 0, . . . , 2q, only [q] + 1 are normalizable (where [q] stands for

the greatest integer properly smaller than q). If q is an integer, there are only q states,
from n = 0, . . . , q − 1, the state with n = q (which correspond to zero energy) being not
normalizable. If q is half-integer, there are q + 1

2 states, from n = 0, . . . , q − 1
2 . Going to the

universal covering group of SL(2, R) real values of q are also allowed.
This behaviour is very different from that of SU(2), where the representations are

2j + 1 dimensional, with j integer or half-integer, but all states are normalizable since
the representations are unitary. This shows that the correct symmetry for bound states is
not SU(2), as is normally claimed in the literature (see, for instance, [5, 7]), but rather the
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finite-dimensional representations of SL(2, R). Note that in the quantum description of the
MPT system in terms of SU(2) non-half-integer values of q would be forbidden.

We remind the reader that for a non-compact, simple group G, such as SL(2, R), a finite-
dimensional representation ρ is not unitary because, otherwise, the group {ρ(g)} would be a
subgroup of U(n) (n = dim ρ) and, therefore, {ρ(g)} and G themselves compact [20].

This paper is organized as follows. In section 2 the classical dynamics in the MPT potential
is presented aiming at finding the relevant symmetry that will be quantized in abstract terms
in the framework of the GAQ. Section 3 is devoted to a very brief report on the GAQ with the
example of the relativistic harmonic oscillator. The quantum dynamics associated with the
MPT interaction, as well as the corresponding Hamiltonian and ladder operators, is derived in
section 4 and, finally, some conclusions are drawn in section 5.

2. Classical theory and Poisson symmetry

Even though the GAQ is primarily intended to achieve quantum systems without the previous
step of solving the classical counterpart, the classical theory can help us in finding the relevant
symmetry. Then, we proceed to solve the classical equations of motion and to look for an
appropriate symmetry as an input to the GAQ.

The Lagrangian for the MPT potential, with positive depth D and width 1/α, can be
written as

L = 1

2
mẋ2 +

D

cosh2(αx)
= 1

2
m

ξ̇ 2

1 + α2ξ 2
+

D

1 + α2ξ 2
, (1)

where we have introduced the coordinate ξ = sinh(αx)

α
.

Let us solve the Euler–Lagrange equations for negative energy E = −ε, ε > 0. They are

ξ̇ =
√

2

m
[(1 + α2ξ 2)E + D], (2)

i.e.

dξ√
2ε
m

√(
D−ε

ε

) − α2ξ 2
= dt; (3)

the solution to which is

ξ =
√

D − ε

α2ε
sin

(√
2εα2

m
t + φ0

)
, (4)

where φ0 ≡ sin−1 αξ0√
D−ε

ε

is the initial phase. Writing also the equation for the velocity, we

arrive at a couple of solutions

ξ = ξ0 cos

√
2εα2

m
t +

√
m

2εα2
ξ̇0 sin

√
2εα2

m
t,

ξ̇ = ξ̇0 cos

√
2εα2

m
t −

√
2εα2

m
ξ0 sin

√
2εα2

m
t,

(5)

where ξ̇0 ≡
√

2εα2

m

√
D−ε
α2ε

− ξ 2
0 is the initial velocity. They go to those of the harmonic

oscillator in the limit in which D → ∞, α → 0, but 2Dα2

m
is kept finite and equal to ω2
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(constant), that is

ξ = ξ0 cos ωt +
ξ̇0

ω
sin ωt, ξ̇ = ξ̇0 cos ωt − ωξ0 sin ωt. (6)

Equations (5) behave as those of an harmonic oscillator with a frequency depending on
the energy. In fact, the Hamiltonian can be written as

H = 1

2
m

ξ̇ 2

1 + α2ξ 2
− D

1 + α2ξ 2
= 1

2
m

ξ̇ 2

1 + α2ξ 2
+

Dα2ξ 2

1 + α2ξ 2
− D

= 1

2
mξ̇ 2 +

1

2
mω(ε)2ξ 2 − D, (7)

where ω(ε) ≡
√

2εα2

m
, and this, up to the constant energy shift −D, is an harmonic oscillator

with energy-dependent frequency ω(ε).4 For positive energy they transform into the equations
of motion for a ‘repulsive-like’ oscillator.

In order to write the Poisson bracket we observe the Poincaré–Cartan form 	PC =
p dx − H dt = ∂L

∂ẋ
(dx − ẋ dt) + L dt :

	PC = mξ̇

1 + α2ξ 2
dξ −

(
1

2
m

ξ̇ 2

1 + α2ξ 2
− D

1 + α2ξ 2

)
dt

= pξ dξ −
[
(1 + α2ξ 2)

p2
ξ

2m
− D

1 + α2ξ 2

]
dt, (8)

where the momentum canonically conjugate to ξ is

pξ ≡ ∂L

∂ξ̇
= mξ̇

1 + α2ξ 2
. (9)

A simple inspection of 	PC indicates that the basic Poisson bracket will acquire the canonical
form

{ξ, pξ } = 1. (10)

By examining the Poisson bracket of H with ξ and pξ , we observe that {H, ξ, (1+α2ξ 2)pξ }
‘close’ a Lie subalgebra with structure constants depending on H, and that it is possible to
close a true algebra by choosing an appropriate function of H to replace H. To be precise, the
following classical functions close a SO(2, 1) algebra〈

E ≡ 2
√

D
√

H,X ≡
√

2√
D

√
Hξ,P ≡

√
2(1 + α2ξ 2)pξ

〉
(11)

In fact, we find

{E,P} = −m�2X , {E,X } = − 1

m
P, {X ,P} = 1

D
E, (12)

where � ≡
√

2α2D
m

= ω(D), which is the frequency of the small oscillations (harmonic
approximation).

For positive energy (scattering states) E can be diagonalized in terms of real combinations
of X and P,

〈
A ≡ 1

�
E, B ≡ 1

2α
(P + m�X ), C ≡ 1

2α
(P − m�X )

〉
, giving rise to the standard

4 See [21] for a unified derivation of different integrable potentials in one and two dimensions and a description of
their solutions, among them the different versions of the Pöschl–Teller potentials. See also [22] for an interpretation
of this system as an harmonic oscillator with position-dependent mass.
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form of the SL(2, R) algebra:

{A,B} = −B, {A,C} = C, {B,C} = A. (13)

However, we are interested in describing bound states with negative energy. For these
states, E and X are purely imaginary and, therefore, we must redefine E ′ ≡ −iE,X ′ ≡ −iX
and P ′ ≡ P . Then, the complex combinations

〈
L0 ≡ 1

�
E ′, L− ≡ 1

2α
(P ′ − im�X ′), L+ ≡

1
2α

(P ′ + im�X ′)
〉

satisfy the algebra

{L0, L+} = iL+, {L0, L−} = −iL−, {L+, L−} = iL0 (14)

which can be identified with the complex form of both SU(2) and SU(1, 1) algebras.
Observing carefully the different algebras, it can be realized that L+ = B,L− = C and
L0 = −iA. This means that the two diagonalizations are the same, the only difference being
the use of A or L0, which are real for positive and negative energies, respectively. This allows
us to consider the two cases simultaneously, with a single algebra, SO(2, 1) or its different
versions SL(2, R) or SU(1, 1), for both positive and negative energies, instead of using the
SU(2) algebra for describing bound states. The only difference will lie in the fact that for
negative energies, some generators will be non-Hermitian, or the pair of creation–annihilation
operators will not be the adjoint to each other; in other words, the representation obtained will
fail to be unitary (this fact was already noted in [17]). We shall postpone the discussion of its
implications to the final section.

3. Group approach to quantization

3.1. Brief report on the general theory

The group approach to quantization [8, 13, 23, 24] lies on the simple idea that essentially a
quantum theory is nothing but a unitary irreducible representation of a Lie algebra usually,
though not necessarily, associated with a Poisson subalgebra of the solution manifold of a
classical system. The GAQ algorithm constitutes simply a technique for representing Lie
groups in a geometric way using only canonical structures on a Lie group, the quantum
states being complex functions on the group manifold itself. The carrier space supports the
realization of all operators (and only those) in the enveloping algebra.

Let us remind the reader that on any Lie group with composition law g′′ = g′ ∗ g, two
different and compatible actions can be considered. In fact, the left and right actions

Lg′ : G → G g 
→ g′′

Rg : G → G g′ 
→ g′′

are generated by right-invariant and left-invariant vector fields on the group G,XR and XL

respectively, and both commute. This is a remarkable property which allows us to adopt one
of those Lie algebras, let us say XR , as well as the associated enveloping algebra, as the
set of physical operators ĝi ∼ XR

gi , whereas the other is used to reduce the corresponding
representation in a compatible way, by nullifying a maximal subalgebra (in the left enveloping
algebra, in general), named polarization, on the (reduced) wavefunctions. Mostly, the relevant
symmetry group is a central extension, G̃, of a Lie group G by U(1). Aiming at representing
the canonical Poisson bracket between x and p, the complex functions on G̃ are then prompted
to satisfy the U(1)-constraint

X̃R
φ � = i�, (15)

where X̃R
φ is the central generator of G̃, associated with the phase invariance of wavefunctions.



6944 V Aldaya and J Guerrero

The classical theory, including the space of coordinates, momenta and time, is recovered
out of the group manifold in a manner similar to the way we obtain the solution manifold
from the (q, p, t) space as the quotient by the kernel of the differential of the Poincaré–
Cartan form 	PC. In fact, there is a generalized Poincaré–Cartan form on the group, the
quantization 1-form 	, such that P ≡ G̃/(Ker d	 ∩ Ker 	) is a quantum manifold in the
sense of Geometric Quantization [25], and S ≡ G̃/Ker d	 is the classical solution manifold.
S can be parametrized by functions of the form 	

(
XR

gi

)
, which are the Noether invariants.

3.2. The example of the relativistic harmonic oscillator

We resort to a rather non-trivial (1+1)-dimensional example to achieve two tasks. On one
hand we exemplify the GAQ algorithm on a physical system, that is, a relativistic harmonic
oscillator (RHO) or a particle moving on (1+1)-anti-de Sitter spacetime and, on the other, we
arrive at precise results on the representations of SU(1, 1) ≈ SL(2, R) that will be required
in the next section. Simpler examples can be found in [8].

Quantum symmetry differs from the classical counterpart in an extra phase (or U(1))
transformation which permits the realization of an exact invariance of action integrands
(Lagrangians or Poincaré–Cartan forms), versus the semi-invariance achieved in classical
mechanics. This is so even in the case of finite-dimensional semi-simple groups for which all
central extensions are mathematically trivial. In fact, the actual central extension of the Lie
algebra of such a symmetry points out to a specific co-adjoint orbit of the classical symmetry
and, then, the phase space (solution manifold) of the classical system [26]. Let us comment
very briefly on these details in relation to the case of the free (1+1)D non-relativistic and
relativistic particle. The quantum symmetry of the Galilean particle obeys the following
commutation relations:[

X̃R
t , X̃R

x

] = 0,
[
X̃R

t , X̃R
p

] = − 1

m
X̃R

x ,
[
X̃R

x , X̃R
p

] = X̃R
φ , (16)

which represent the classical Poisson algebra among x, p,
p2

2m
and 1, once the wavefunctions

are constrained by the U(1)-function condition (15). The algebra (16) constitutes a non-
trivial central extension of that of the Galilei group by U(1). In going to the relativistic
case, the Poincaré group is also centrally extended, although trivially, in such a way that the
corresponding algebra reads[
X̃R

t , X̃R
x

] = 0,
[
X̃R

t , X̃R
p

] = − 1

m
X̃R

x ,
[
X̃R

x , X̃R
p

] = 1

mc2
X̃R

t + X̃R
φ . (17)

In the non-relativistic limit, this algebra contracts to the non-trivial extension (16).
To describe the quantum SL(2, R) symmetry, physically realized as a quantum relativistic

harmonic oscillator5 [9–11], we can dilate (as the opposite to contract) the algebra (17) with
an extra term in the rhs so that it contracts to the Poincaré algebra in the limit ω → 0 and
to the non-relativistic harmonic oscillator, with angular frequency ω, in the c → ∞ limit.
We shall apply the group quantization mechanism to the resulting group parametrized with
renamed time, position and momentum variables, (τ, y, π), as well as the mass, µ, to prevent
any confusion with analogous variables in the physical problem analysed in the next section.
We then write[
X̃R

τ , X̃R
y

] = −µω2X̃R
π ,

[
X̃R

τ , X̃R
π

] = − 1

µ
X̃R

y ,
[
X̃R

y , X̃R
π

] = 1

µc2
X̃R

τ + X̃R
φ . (18)

5 See also [27] for an alternative approach to the relativistic harmonic oscillator where the SU(1, 1) group is also
realized as a dynamical symmetry.
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These commutation relations can be exponentiated to a group law in many (equivalent)
ways, the next one being just a possibility:

sin ωτ ′′ = ω

β ′′

(
β

µc2β ′ π
′y ′ sin ωτ ′ sin ωτ +

β�′
0

µωβ ′c
cos ωτ ′ sin ωτ

+
ω

β ′µc3
yy ′�′

0 sin ωτ ′ +
β ′β
ω

cos ωτ sin ωτ ′ +
π ′y

µc2β ′ cos ωτ ′
)

y ′′ = π ′β
µω

sin ωτ + βy ′ cos ωτ +
y�′

0

µc

π ′′ = ωyπ

βc2

(
π ′

µ
sin ωτ + ωy ′ cos ωτ

)
+

�0

cβ

(
π ′

µ
cos ωτ − ωy ′ sin ωτ

)
+

π�′
0

µc

ζ ′′ = ζ ′ζ e
i
h̄
(δ′′−δ′−δ),

(19)

where

�0 ≡
√

µc2 + π2 + µ2ω2y2, β ≡
√

1 +
ω2y2

c2

δ ≡ −µc2τ − f, f ≡ −2µc2

ω
tan−1

[
µc2

ωπy
(β − 1)

(
�0

µc
− β

)]
.

(20)

From the group law above we derive directly the set of left-invariant vector fields, which are
relevant in the reduction procedure, through a polarization algebra, and the generalization of
the Poincaré–Cartan form

X̃L
τ = π

µ

∂

∂y
− µω2y

∂

∂π
+

�0

µcβ2

∂

∂τ
, X̃L

π = �0

µc

∂

∂π
+

mcy

�0 + mc

1

h̄
�

X̃L
y = �0

µc

∂

∂y
+

π

µc2β2

∂

∂τ
− µcπ

�0 + µc

1

h̄
�, X̃L

φ = ∂

∂φ
≡ �

(21)

as well as the right-invariant vector fields, which provide the quantum operators on U(1)-
complex functions on the group, once a polarization had been imposed. They are

X̃R
τ = ∂

∂τ
,

X̃R
π = β

µω
sin ωτ

∂

∂y
+

(
ωyπ

µc2β
sin ωτ +

�0

µcβ
cos ωτ

)
∂

∂π

+
y

µc2β
cos ωτ

∂

∂τ
− 1

(�0 + µc)β

(
�0y cos ωτ − πc

ω
sin ωτ

) 1

h̄
�,

X̃R
y = β cos ωτ

∂

∂y
+

(
ω2yπ

c2β
cos ωτ − �0ω

cβ
sin ωτ

)
∂

∂π
− yω

c2β
sin ωτ

∂

∂τ

+
µ

(�0 + µc)β
(�0ωy sin ωτ + πc cos ωτ)

1

h̄
�.

(22)

The structure of the algebra (18) prevents the existence of a first-order polarization
subalgebra leading to the configuration ‘representation’ (there are first-order polarizations
constituted by ladder operators leading to the Fock ‘representation’ [9, 10]). However, it
is possible to look for a second-order polarization subalgebra of the left-enveloping algebra
reproducing the configuration ‘representation’. The simplest choice is the algebra generated
by 〈

X̃HO
τ ≡ (

X̃L
τ

)2 − c2
(
X̃L

y

)2 − 2iµc2

h̄
X̃L

τ +
iµc2ω

h̄
�, X̃L

π

〉
, (23)
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which must be imposed, along with the U(1)-constraint, to complex functions �(φ, y, π, τ )

on the extended group. The solutions are

�� = i� → � = eiφ�(y, π, τ )

X̃L
π� = 0 → � = eiφ e

i
h̄
f ψ(y, τ )

X̃HO
τ � = 0 → 1

β2

∂2ψ

∂τ 2
− 2iµc2

h̄β2

∂ψ

∂τ
− 2ω2y

∂ψ

∂y
− c2β2 ∂2ψ

∂y2
− µ2c4

h̄2β2
ψ +

µc2ω

h̄
ψ = 0,

(24)

where f is the function that appears in (20). By restoring the rest-mass energy6 we get a
Klein–Gordon-like equation from the third line in (24)

Ĉϕ ≡ − c2

ω2
�ϕ = N(N − 1)ϕ, (25)

where

� ≡ 1

c2β2

∂2

∂τ 2
− 2ω2y

c2

∂

∂y
− β2 ∂2

∂y2
(26)

is the D’Alembertian in an anti-de Sitter spacetime and N = µc2

h̄ω
; see [10] where the connection

to the motion in a homogeneous space under the group SO(1, 2), that is, the anti-de Sitter
universe, is studied. We use the notation Ĉϕ to highlight that the lhs in (25) is the quantum
realization of the Casimir operator of the Lie algebra of SL(2, R) [16].

Equation (25) can be solved in power series. Writing the energy wavefunctions in the
form

ϕn ≡ e−ibnωτβ−cnHN
n , (27)

and putting it in equation (25), we obtain the relations

bn = cn, cn = c0 + n ≡ N + n, (28)

as well as the differential equation for the polynomials HN
n :(

1 +
ζ 2

N

)
d2

dζ 2
HN

n − 2

N
(N + n − 1)ξ

d

dζ
HN

n +
n

N
(2N + n − 1)HN

n = 0, (29)

where ζ ≡
√

µω

h̄
y.

Equation (29) defines the so-called relativistic Hermite polynomials (RHP) originally
found in [9] and further developed in [10]. There, we gave the corresponding Rodrigues’
formula

HN
n (ζ ) = (−1)n

(
1 +

ζ 2

N

)N+n
dn

dζ n

[(
1 +

ζ 2

N

)−N
]

. (30)

The normalized solutions of equation (25), with respect to the scalar product

〈�,� ′〉 =
∫

�∗(y, τ )� ′(y, τ ) dy dτ, (31)

which is invariant under the group SL(2, R), are given by

�̄N
n (y, τ ) = CN

n �N
n (y, τ ) ≡ CN

n e−i(N+n)ωτβ−(N+n)HN
n

(√
µω

h̄
y

)
, (32)

6 The actual way of centrally extending a Lie algebra with trivial cohomology, like that of the relativistic symmetry
associated with the free particle or the harmonic oscillator, consists in redefining one particular generator, the energy
in this case, with a term proportional to the central generator.
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where

CN
n =

√
ω

2π

(µω

h̄π

)1/4
√

Nn−1/2�(2N)�(N)

n!�(2N + n)�
(
N − 1

2

) . (33)

Creation and annihilation operators for the RHO can be introduced simply by Ẑ ≡
1√
2

(
X̃R

y − iµωX̃R
π

)
and Ẑ† ≡ 1√

2

(−X̃R
y − iµωX̃R

π

)
. They turn out to be, when acting on the

solutions of equation (24) (see [10, 11]),

Ẑ =
√

h̄

2µω
eiωtβ

[
∂

∂y
+ i

ωy

c2β2

∂

∂τ
+

µωy

h̄β2

]

Ẑ† =
√

h̄

2µω
e−iωtβ

[
− ∂

∂y
+ i

ωy

c2β2

∂

∂τ
+

µωy

h̄β2

]
.

(34)

These operators are adjoint to each other with respect to the scalar product (31). Their
action on energy eigenstates �N

n is given by

Ẑ�N
n = n

2N + n − 1

2N
�N

n−1, Ẑ†�N
n = �N

n+1. (35)

On normalized solutions (32) they become

Ẑ�̄N
n =

√
n

2N + n − 1

2N
�̄N

n−1, Ẑ†�̄N
n =

√
(n + 1)

2N + n

2N
�̄N

n+1. (36)

It should be remarked that the normalized solutions (32) are orthogonal on account of the
integration in τ , but not in y. This causes problems in the time factorization in order to obtain
the minimal (versus manifestly, or time-dependent) realization, in terms of just y (see [10] for
a discussion and [11] for a detailed explanation), and a modification of the scalar product and
the creation and annihilation operator is needed. In fact, the new scalar product is

〈�,� ′〉 =
∫

�∗(y)� ′(y)
dy

β2
, (37)

and the normalized solutions with respect to this scalar product, with the time dependence
factorized out, are

�̄ ′N
n (y) = C ′N

n β−(N+n)HN
n

(√
µω

h̄
y

)
, (38)

where

C ′N
n =

√
N + n

N − 1
2

CN
n =

√
ω

2π

(µω

h̄π

)1/4
√

Nn−1(N + n)�(2N)�(N + 1)

n!�(2N + n)�
(
N + 1

2

)

= 1

2π

√
ω

(µω

h̄

)1/4
2NNn/2�(N)

√
N + n

n!�(2N + n)
. (39)

The modified creation and annihilation operators, adjoint to each other with respect
to the new scalar product (37), are obtained [11] through the unitary transformation
Ẑ′ = Û ẐÛ−1, Ẑ′† = Û Ẑ†Û−1, where Û is the unitary operator



6948 V Aldaya and J Guerrero

Û =
√

Ĥ

h̄ω
(
N − 1

2

) e
i
h̄
τ (Ĥ−µc2). (40)

Here Ĥ is ih̄ ∂
∂τ

when acting on the manifestly covariant realization, and an infinite power
expansion in d

dy
and y on the minimal realization (see [11]), which acquires the simple

expression h̄ω(N + n) on energy eigenfunctions (38). The expression of the new ladder
operators in the minimal realization, acting on energy eigenfunctions (38), is [10]

Ẑ′ =
√

h̄

2µω

√
N + n − 1

N + n
β

[
d

dy
+

µωy

h̄β2

N + n

N

]

Ẑ′† =
√

h̄

2µω

√
N + n + 1

N + n
β

[
− d

dy
+

µωy

h̄β2

N + n

N

]
.

(41)

The RHP have been studied by different authors and related to other already known
polynomials, such as Jacobi [28] or Gegenbauer [29] polynomials, and the essence of the
latter is collected here since it is relevant for the next section. In fact, in [29] the following
relation is proved:

HN
n (v

√
N) = n!

N
n
2
(1 + v2)

n
2 CN

n

(
v√

1 + v2

)
, (42)

where CN
n (v) are the Gegenbauer polynomials [30] directly related to the hypergeometric

functions 2F1. For negative index, N ≡ −q, we can also write

H−q
n (

√
qv) ≈ C

q−n+ 1
2

n (v). (43)

It should be remarked that in [29] it is commented that ‘HN
n (ξ) can actually be expressed

directly as a (generalized) Gegenbauer polynomial in the form C−N−n+ 1
2 (iξ/

√
N). This

representation does not seem to be very useful, however’. We shall see in the next section that
this relation will be rather useful in the description of the quantum MPT system.

4. The quantum Pöschl–Teller system

The commutation relations in (12) and (18) are formally analogous provided that we redefine
in (18) the generator X̃R

τ as
(
X̃R

τ

)′ ≡ X̃R
τ +µc2X̃R

φ , a redefinition which has been referred to as
the restoring of the rest-mass energy and which, in mathematical terms, trivializes the central
extension of the original SO(2, 1) algebra7. We then aim at finding the quantum theory of
the MPT dynamics in the quantum representation space of this symmetry and resorting to its
enveloping algebra in search of the actual MPT Hamiltonian operator.

Let us proceed in a direct way, once the explicit computations have been developed for the
SO(2, 1) group in the example of the relativistic harmonic oscillator. First of all, we restore the
standard notation t, x, p to represent time, coordinate and momentum for the MPT problem
associated with a particle of mass m. The essential problem is now to find the explicit form
of the operator ih̄ ∂

∂t
, the square of E , acting on the wavefunctions representing the classical

Poisson algebra (12) when rewritten in terms of the variable x ≡ sinh−1(αξ)/α. To this end
we rewrite (27) for a negative value N ≡ −q < 0 of the Bargmann index of the discrete series
of the SL(2, R) representations

ϕq
n ≡ e−icnωτ

(
1 +

ω2

c2
y2

)− cn
2

H−q
n , (44)

7 The affine form in (18) is needed to perform the correct non-relativistic limit, which is a group contraction from
SO(2, 1) to the harmonic oscillator group.
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Table 1. Expression of RHP with different values of the negative Bargmann index −q.

q = 1 q = 3
2 q = 1.8

H−1
0 (x) = 1

H−1
1 (x) = 2x

H−1
2 (x) = 2(x2 − 1)

H−1
3 (x) = 0

.

.

.

H−1
n (x) = 0, n > 2

H
− 3

2
0 (x) = 1

H
− 3

2
1 (x) = 2x

H
− 3

2
2 (x) = −2 + 8

3 x2

H
− 3

2
3 (x) = −4x + 16

9 x3

H
− 3

2
4 (x) = 4

H
− 3

2
5 (x) = − 40

3 x

.

.

.

H
− 3

2
4+k (x) of degree k

H−1.8
0 (x) = 1

H−1.8
1 (x) = 2x

H−1.8
2 (x) = −2 + 26

9 x2

H−1.8
3 (x) = 16

81 x(−27 + 13x2)

H−1.8
4 (x) = 16

243 (81 − 54x2 + 13x4)

H−1.8
5 (x) = − 32

2187 x(405 − 90x2 + 13x4)

.

.

.

H−1.8
n (x) of degree n

or, making explicit the h̄ constant, in terms of u ≡ ζ√
q
, ζ ≡

√
µω

h̄
y, and taking into account

that ω2

c2 = µω

h̄N
, and cn = n − q,

ϕq
n(τ, u) = e−i(n−q)ωτ�q

n (u) ≡ e−icnωτ (1 − u2)
q−n

2 H−q
n (

√
qu). (45)

In table 1 the expression of the RHP with different values of q are shown. They can also be
derived from a Rodrigues’ formula analogous to (30) but substituting −q for N.

The ladder operators for this system can also be obtained from the ones for the RHO
given in the previous section, equation (34), simply by changing N → −q and performing
the appropriate change of variables:

Ẑ = 1√
2q

eiωτ
√

1 − u2

[
∂

∂u
− i

ω

u

1 − u2

∂

∂τ

]

Ẑ† = 1√
2q

e−iωτ
√

1 − u2

[
− ∂

∂u
− i

ω

u

1 − u2

∂

∂τ

]
,

(46)

where the ‘rest-mass energy’ has been restored, in this case. The action of these operators on
energy eigenstates has the simple form (similar to (35)):

Ẑϕq
n = n

2q − n + 1

2q
ϕ

q

n−1, Ẑ†ϕq
n = ϕ

q

n+1. (47)

From the action of the ladder operators, we conclude that the representation space has
dimension 2q + 1 (for q integer or half-integer), since Ẑϕ

q

0 = 0 and Ẑ†ϕ
q

2q = ϕ
q

2q+1 is a ‘null

vector’, i.e. a state that behaves as a vacuum state in the sense that Ẑϕ
q

2q+1 = 0 (the concept
of null state arose in the study of the representations of the Virasoro group [31–33] in the
Verma-module approach). The irreducible finite-dimensional representation is obtained as the
quotient by the ‘null vectors’ (see [18]). However, for q integer ϕ

q

2q+1 ≡ 0 and the quotient
process is trivial.

Therefore, unlike the RHO (discrete series representations), the MPT has only a
finite number of (bound) states, realizing the irreducible (non-unitary) finite-dimensional
representations of SL(2, R) [17–19].
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Let us try to derive the Schrödinger equation for the MPT potential from the Klein–
Gordon equation of the relativistic harmonic oscillator (with negative Bargmann index). From
equation (25) we can isolate the second ‘time’ derivative of ϕ:

∂2ϕ

∂τ 2
= −ω2(1 − u2)

[
−2u

∂ϕ

∂u
+ (1 − u2)

∂2ϕ

∂u2
+ q(q + 1)ϕ

]
. (48)

Expressing the u-derivative in terms of x-derivative, from the relation u ≡ tanh(αx),

∂2

∂x2
= α2(1 − u2)

[
(1 − u2)

∂2

∂u2
− 2u

∂

∂u

]
, (49)

and defining D through q(q + 1) ≡ N(N − 1) = 2mD

α2h̄2 = (
2D
h̄�

)2
we obtain

− h̄2α2

2mω2

∂2

∂τ 2
ϕ =

[
h̄2

2m

∂2

∂x2
ϕ +

D

cosh2(αx)
ϕ

]
. (50)

This way, denoting t ≡ 2ω
�

τ, Ê ≡ ih̄ ∂
∂t

, and defining ϕ ≡ e− i
h̄

√
D

√−Etχ, (−E ≡ ε), we arrive
at the time-independent Schrödinger equation for a particle of mass m in a MPT potential with
depth D and width 1/α:8

h̄2

2m

d2χ

dx2
+

(
E +

D

cosh2(αx)

)
χ = 0. (51)

The solutions to this equation were given in terms of Gegenbauer polynomials [7],

χq
n (u) ≈ (1 − u2)

q−n

2 C
q−n+ 1

2
n (u), (52)

which can now be compared with the time-independent part, �
q
n (u), of the functions of the

relativistic harmonic oscillator (45) (through the relation (43)).
The scalar product for the minimal (time-independent) realization can be directly derived

or obtained from that of the RHO, changing dy

β2 → du
1−u2 :

〈�,� ′〉 =
∫ 1

−1
�∗(u)� ′(u)

du

1 − u2
. (53)

The ladder operators for the time-independent realization can also be obtained from the
ones for the RHO given in the previous section, simply by changing N → −q and performing
the appropriate change of variables. On eigenfunctions they have the expression

Ẑ′ = 1√
2q

√
q − n + 1

q − n

√
1 − u2

[
d

du
+

u

1 − u2
(q − n)

]

Ẑ′† = 1√
2q

√
q − n − 1

q − n

√
1 − u2

[
− d

du
+

u

1 − u2
(q − n)

]
,

(54)

with the same action as in (47) on energy eigenstates �
q
n .

These operators and their action coincide, up to a constant factor, with the ones given
in [35].

The spectrum of the MPT Hamiltonian can also be derived from that of the RHO:

En = −h̄2α2

2m
(q − n)2 = −h̄2�2

4D
(q − n)2 = − D

q(q + 1)
(q − n)2, n = 0, 1, . . . , 2q.

(55)

8 See [34] for a similar derivation of this equation, although in a geometrical setting as generalization of the anti-de
Sitter geometry, without using group-theoretical methods.
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Let us look in detail at the obtained representation. We shall first consider the case of
integer q. From equation (30) with N = −q, we observe that H

−q
n = 0 for n > 2q (see

table 1). Therefore, there are just 2q + 1 states, in agreement with the previous statement
that the representation is finite dimensional. Then, if q is an integer, all eigenvalues except
one are doubly degenerated, the minimum being E0 = − h̄2α2

2m
q2 = − q

q+1D = E2q , and the
maximum being Eq = 0. However, this degeneracy is only apparent, since the complete
wavefunction for the states with the same energy, �

q
n and �

q

2q−n, n = 0, . . . , q − 1, are
identical. Furthermore, if we consider the normalization of the states with the scalar product
(53), it turns out that the state �

q
q , the one with zero energy, is not normalizable. This

means that the physical Hilbert space is spanned by �
q
n , n = 0, . . . , q − 1, since the other

states, �
q
n , n = q + 1, . . . , 2q, are copies of them (we can also think of it as if they

were not reachable by the action of creation operators, since the state �
q
q is out of the

Hilbert space).
If q is half-integer, from equation (30) with N = −q (see table 1), we deduce that there

are an infinite number of states. Their behaviour is as follows: for n = 0, . . . , 2q,H
q
n is

a polynomial of degree n, as should be, but H
q

2q+1 is a polynomial of degree zero, and then
H

q

(2q+1)+k, k = 1, 2, . . . , is a polynomial of degree k. However, by the action of the ladder
operators only the first 2q + 1 states are reachable, and the representation is finite dimensional.
Even more, the states �

q
n and �

q

2q−n, n = 0, . . . , q − 1
2 , are not identical and therefore there

is a double degeneracy for all the states. However, if we take into account the normalizability
with respect to the scalar product (53), it turns out that the physical Hilbert space is spanned
by �

q
n , n = 0, . . . , q − 1/2, the rest of states being not normalizable.
In summary, for the finite-dimensional (non-unitary) representations of SL(2, R), from

the 2q + 1 states of the representation, �
q
n , n = 0, . . . , 2q, only [q] + 1 are normalizable,

�
q
n , n = 0, . . . , [q] (recall that [q] was the greatest integer properly smaller than q), and these

span the physical Hilbert space. These states are also orthogonal with respect to the scalar
product (53), and the orthonormal basis is

�̄q
n (u) = Nq

n �q
n (u), Nq

n = 2−q

�(q + 1)

√
(q − n)�(2q − n + 1)

n!
, n = 0, . . . , [q].

(56)

If we express the solutions in terms of Gegenbauer polynomials, the results are similar;
the only difference is that for the non-normalizable states they are not defined. The reason is
that the proportionality constant in (43) diverges for these cases.

5. Concluding remarks

The properties of the wavefunctions of the MPT potential are very different from that of
SU(2) representations, which also span finite-dimensional, though unitary, representations
and, therefore, for j integer or half-integer, all 2j + 1 states are orthogonal and normalizable.
This clearly implies that we cannot use SU(2) as the symmetry group for bound states.
Furthermore, the use of SU(2) leads to inconsistencies, since it predicts a double degeneracy
in the eigenstates, something that is forbidden in one dimension. Despite this, it has been
widely used in the literature; see, for instance, [5, 7].

An important fact of having finite-dimensional representations of SL(2, R) instead of
SU(2) is that, going to the universal covering group of SL(2, R), all positive values of q are
allowed. In this case (see table 1) H

−q
n is a polynomial of degree n for all n ∈ N, but taking
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into account the normalizability with respect to the scalar product (53), only the first [q] + 1
states are normalizable, from n = 0, 1, . . . , [q], and these span the physical Hilbert space9.
Since SU(2) is already simply connected, no real values other than integer or half-integer are
allowed for the index j labelling its representations. This has relevant consequences from the
physical point of view. Since q(q + 1) = 2mD

α2h̄2 = (
2D
h̄�

)2
, the restriction of q to integer and

half-integer values (as happens for SU(2) representations) leads to a formal quantization of the
potential parameter D/α2 (or rather 2D

h̄�
), whereas this does not happen for finite-dimensional

SL(2, R) representations, where all real values of q are allowed.
Probably, the most important reason to support the idea of describing the bound states

of the MPT system by SL(2, R) instead of SU(2) is the harmonic limit, which consists in
taking D → ∞, α → 0 such that α2D is kept constant. Both the positive discrete series
and the finite-dimensional representations of SL(2, R) contract, under the limit N → ∞
and q → ∞, respectively, to the harmonic oscillator. In fact, from equation (30) it can
be directly checked that limN→±∞HN

n (x) = Hn(x). For the case of the finite-dimensional
representations, the harmonic limit of the energies requires a previous redefinition, in such a
way that limD→∞(En + D) = h̄�

(
1
2 + n

)
, that is, the spectrum of the harmonic oscillator with

frequency � = ω(D) is recovered. Even the ladder operators (46) go to the ladder operators
of the harmonic oscillator (with frequency �) in the harmonic limit (see [35]). However,
contracting the SU(2) representations to that of the harmonic oscillator would require a
negative spin index.

An important point to clarify is the physical interpretation, if any, of the non-normalizable
states. For q integer, the only non-normalizable state is �

q
q , which, under normalization (see

(56)), turns out to be actually zero, �̄
q
q = 0. Even more, the action of the creation operator

in (54) on �
q

q−1 is Ẑ′†�q

q−1 = 0. Therefore, the irreducible subspace has dimension q, from
n = 0, 1, . . . , q − 1. A similar situation appears in the study of bound states for the square
well potential. In this case, for appropriate values of the width and depth of the potential, there
is a bound state with zero energy, but this state is either identically zero or non-normalizable
(see [36] for a discussion), therefore it is unphysical and should be discarded.

For q half-integer, the situation is a little more involved, since the (2q + 1)-dimensional
representation is obtained after a quotient-by-null-vector process, and in addition the
normalization factor N

q
n in equation (56) is not valid for n > q, which should be zero since

these states are non-normalizable. In this case, a normalization factor of the type θ(q − n)N
q
n

should be appropriate, where θ(x) is a step function, i.e. it is zero for x � 0 and one for
x > 0. A similar interpretation holds for q non-half-integer. In this case the representation is
infinite dimensional, as can be seen from table 1 (in fact, it belongs to the discrete series of
representations with negative Bargmann index, and it is non-unitary, see [17]). After a proper
normalization with an step function θ(q − n), the physical Hilbert space is made up of only
[q] + 1 normalizable states. On these states, the action of Ẑ′ and Ẑ′† satisfies an equation
analogous to (36) with N = −q.

Another question to tackle is the nature of the representations here obtained. For q integer
or half-integer, we have obtained irreducible, non-unitary (true) representations of SL(2, R),
of dimension 2q+1. Under normalization of the states (discarding the non-normalizable states)
we have obtained a new kind of irreducible unitary representation which can be associated
with SL(2, R) but which cannot be, definitely, true representations of SL(2, R). The creation
and annihilation operators (54) close, together with the (square root of) the MPT Hamiltonian,
an SL(2, R) Lie algebra, although they lie in the enveloping algebra of the Lie algebra, since

9 This is in agreement with the WKB counting of bound states for a general potential [36], applied to the Pöschl–Teller
potential, which turns out to be N ≈ 1

2 +
√

q(q + 1), and this equals q + 1 for large q.
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they are non-local (they depend on the state). A detailed study of these representations is in
progress.

This results can be extended to the Morse potential [4, 5, 37]. As in the present case there
is a finite number of bound states, which are associated with a finite-dimensional, non-unitary
representation of SL(2, R) [38] (although in the literature they have also been associated with
SU(2)).

As a last general comment, we should say that a more complete study of the Pöschl–Teller
dynamics resorting to the GAQ of the SL(2, C) group would be in order. In that case, the
different parts of the spectrum would be more properly related to different (real) subgroups.
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Cotaescu I I 1997 Relativistic Pöschl–Teller and Rosen–Morse problems Preprint physics/9704007
[35] Lemus R and Bernal R 2002 Chem. Phys. 283 401
[36] Galindo A and Pascual P 1990 Quantum Mechanics vol I (Berlin: Springer)
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